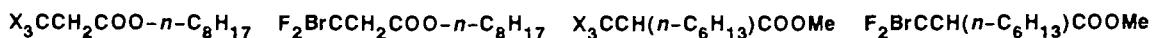
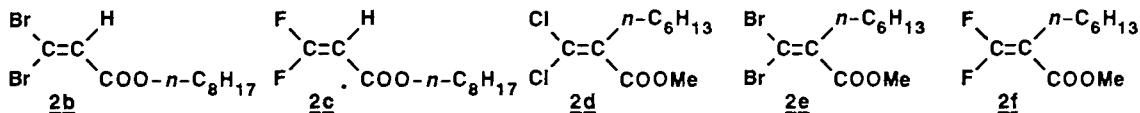

Triethylborane Induced Radical Reaction of Ketene Silyl Acetals with Polyhalomethanes. Synthesis of 3,3-Dihalo- and 3-Haloacrylates

Jiro SUGIMOTO, Katsukiyo MIURA, Koichiro OSHIMA,\* and Kiitiro UTIMOTO\*  
 Department of Industrial Chemistry, Faculty of Engineering,  
 Kyoto University, Yoshida, Sakyo-ku, Kyoto 606

Treatment of ketene octyl *t*-butyldimethylsilyl acetal with tetrabromomethane or tribromomethane in the presence of a catalytic amount of triethylborane gave octyl 3,3-dibromoacrylate or octyl (E)-3-bromoacrylate, respectively.

Recently we reported that triethylborane induced a facile addition of perfluoroalkyl iodides to silyl enol ethers to give  $\alpha$ -perfluoroalkylated ketones.<sup>1)</sup> Here, we report that treatment of ketene silyl acetals with polyhalomethanes gives 3,3-dihalo or 3-haloacrylates in good yields.<sup>2)</sup>



A hexane solution of triethylborane<sup>3)</sup> (1.0 M, 1 M = 1 mol dm<sup>-3</sup>, 0.2 ml, 0.2 mmol) was added to a solution of ketene octyl *t*-butyldimethylsilyl acetal **1a** (0.57 g, 2.0 mmol) and tetrachloromethane (0.14 g, 1.0 mmol) in hexane (5 ml) at 25 °C under argon atmosphere. The resulting mixture was stirred for 30 min at 25 °C and saturated aqueous sodium hydrogencarbonate (5 ml) was added. The mixture was stirred for another 30 min and poured into water (20 ml). Extraction with hexane (20 ml x 3) followed by purification by silica-gel column chromatography gave octyl 3,3-dichloroacrylate **2a** (0.24 g) in 95% yield.<sup>4)</sup>



The representative results are summarized in Table 1. The reaction of ketene silyl acetals **1a** and **1b** with tetrahalomethanes such as  $\text{CCl}_4$ ,  $\text{CBrCl}_3$ ,  $\text{CBr}_4$ , and  $\text{CF}_2\text{Br}_2$  gave 3,3-dihaloacrylates **2** in good yields with an exception of the reaction of **1b** with  $\text{CF}_2\text{Br}_2$  providing an adduct  $\text{CF}_2\text{CBrCH}_2\text{COO-}n\text{-C}_8\text{H}_{17}$  **3c** as a major product. On the other hand, ketene silyl acetal **1c** reacted slowly compared with unsubstituted ketene silyl

Table 1. Reaction of Ketene Silyl Acetal with Tetrahalomethane<sup>a)</sup>

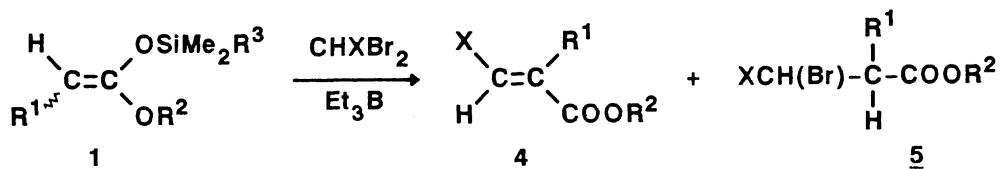
| Entry | Ketene silyl acetal | Tetrahalo-<br>methane           | Reaction<br>time/h | Product (Yield/% <sup>b)</sup> ) |
|-------|---------------------|---------------------------------|--------------------|----------------------------------|
|       |                     |                                 |                    | 2 3                              |
| 1     |                     | CCl <sub>4</sub>                | 0.5                | 2a (95) 3a (0)                   |
| 2     |                     | CBrCl <sub>3</sub>              | 0.5                | 2a (93) 3a (0)                   |
| 3     |                     | CBr <sub>4</sub>                | 3.0                | 2b (87) 3b (0)                   |
| 4     |                     | CF <sub>2</sub> Br <sub>2</sub> | 0.5                | 2c (93) 3c (3)                   |
| 5     |                     | CCl <sub>4</sub>                | 0.5                | 2a (80) 3a (0)                   |
| 6     |                     | CBrCl <sub>3</sub>              | 0.5                | 2a (75) 3a (6)                   |
| 7     |                     | CBr <sub>4</sub>                | 3.0                | 2b (76) 3b (0)                   |
| 8     |                     | CF <sub>2</sub> Br <sub>2</sub> | 0.5                | 2c (17) 3c (71)                  |
| 9     |                     | CCl <sub>4</sub>                | 12                 | 2d (0) 3d (52)                   |
| 10    |                     | CBrCl <sub>3</sub>              | 12                 | 2d (0) 3d (90)                   |
| 11    |                     | CBr <sub>4</sub>                | 12                 | 2e (14) 3e (38)                  |
| 12    |                     | CF <sub>2</sub> Br <sub>2</sub> | 12                 | 2f (0) 3f (73)                   |



3a: X=Cl 3b: X=Br

3c

3d: X=Cl 3e: X=Br

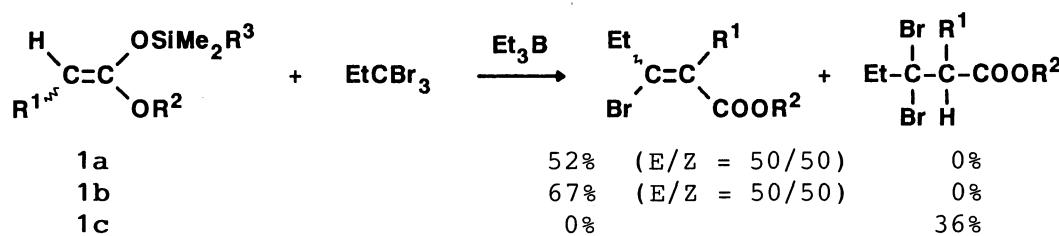

3f

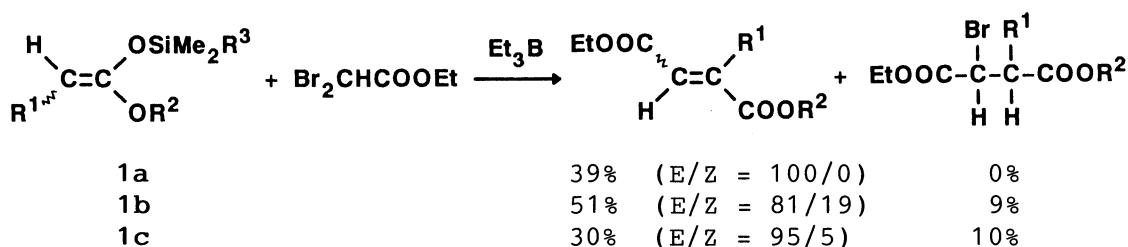
a) Ketene silyl acetal (2.0 mmol), tetrahalomethane (1.0 mmol), and  $Et_3B$  (0.2 mmol) were employed. b) Isolated yields based on tetrahalomethane.

acetals (**1a** and **1b**) and it took 12 h to give adducts  $X_3CCH(n-C_6H_{13})COOMe$  (**3**) as main products. 3,3,3-Trihalopropanoates **3** were easily converted into 3,3-dihaloacrylates upon treatment with base. Thus, treatment of a crude product **3d** with saturated aqueous  $K_2CO_3$  in methanol at 25 °C for 1 h provided **2d** as a single product in 48% yield. Tetrasubstituted ketene silyl acetal  $Me_2C=C(O-n-C_6H_{13})OSiMe_3$  afforded  $Cl_3CC(Me_2)COO-n-C_6H_{13}$  in 49% yield upon treatment with  $CBrCl_3$  for 12 h.

The reaction of ketene silyl acetals with trihalomethanes has been examined (Table 2). Chloroform did not react with **1a**, **1b**, and **1c**. Meanwhile, the reaction of **1a** or **1b** with  $CHCl_2Br$  or  $CHBr_3$  gave the corresponding octyl (E)-3-chloroacrylate **4a** or octyl (E)-3-bromoacrylate **4b** with high stereoselectivity.<sup>5)</sup> In the case of the reaction of **1a** and **1b** with  $CHFBr_2$ , octyl 3-bromo-3-fluoropropanoate **5c** was obtained in

Table 2. Reaction of Ketene Silyl Acetal with Trihalomethane<sup>a)</sup>





| Entry | Ketene silyl acetal | Trihalomethane      | Reaction time/h | Product (Yield/% <sup>b</sup> ) |                |                |
|-------|---------------------|---------------------|-----------------|---------------------------------|----------------|----------------|
|       |                     |                     |                 | X                               | 4              | 5              |
| 1     | <b>1a</b>           | CHClBr <sub>2</sub> | 1.5             | Cl                              | <b>4a</b> (66) | <b>5a</b> (0)  |
| 2     | <b>1a</b>           | CHBr <sub>3</sub>   | 1.5             | Br                              | <b>4b</b> (60) | <b>5b</b> (0)  |
| 3     | <b>1a</b>           | CHFBr <sub>2</sub>  | 1.5             | F                               | <b>4c</b> (14) | <b>5c</b> (34) |
| 4     | <b>1b</b>           | CHClBr <sub>2</sub> | 1.5             | Cl                              | <b>4a</b> (52) | <b>5a</b> (0)  |
| 5     | <b>1b</b>           | CHBr <sub>3</sub>   | 1.5             | Br                              | <b>4b</b> (66) | <b>5b</b> (0)  |
| 6     | <b>1b</b>           | CHFBr <sub>2</sub>  | 1.5             | F                               | <b>4c</b> (6)  | <b>5c</b> (59) |
| 7     | <b>1c</b>           | CHClBr <sub>2</sub> | 12              | Cl                              | <b>4d</b> (0)  | <b>5d</b> (66) |
| 8     | <b>1c</b>           | CHBr <sub>3</sub>   | 12              | Br                              | <b>4e</b> (0)  | <b>5e</b> (68) |
| 9     | <b>1c</b>           | CHFBr <sub>2</sub>  | 12              | F                               | <b>4f</b> (0)  | <b>5f</b> (22) |

a) Ketene silyl acetal (2.0 mmol), trihalomethane (1.0 mmol), and  $\text{Et}_3\text{B}$  (0.2 mmol) were employed. b) Isolated yields based on trihalomethane.

addition to octyl (E)-3-fluoroacrylate **4c**.<sup>6</sup>) Ketene silyl acetal **1c** provided methyl 2-(dihalomethyl)octanoate **5** as a single product upon treatment with trihalomethanes. 3,3-Dihalopropanoates **5** were easily transformed into 3-haloacrylate derivatives. For instance, the reaction of **1c** with  $\text{CHBr}_3$  followed by treatment with  $\text{Et}_3\text{N}$  at 50 °C for 4 h afforded methyl 2-bromomethyleneoctanoate **4e** in 66% yield.

Treatment of **1a**, **1b**, and **1c** with 1,1,1-tribromopropane or ethyl 2,2-dibromopropanoate in the presence of triethylborane catalyst gave the corresponding 3-bromo-2-pentenoate or ethenylenedicarboxylate as a (E) and (Z) stereoisomeric mixture as shown below.<sup>7)</sup>





## References

- 1) K. Miura, M. Taniguchi, K. Nozaki, K. Oshima, and K. Utimoto, *Tetrahedron Lett.*, **31**, 6391 (1990).
- 2) An addition of polyhalomethane to alkenes has been reported. K. Maruoka, H. Sano, Y. Fukutani, and H. Yamamoto, *Chem. Lett.*, **1985**, 1689; H. Matsumoto, T. Nakano, and Y. Nagai, *Tetrahedron Lett.*, **1973**, 5147; J. Tsuji, K. Sato, and H. Nagashima, *Chem. Lett.*, **1981**, 1169; M. Heintz, G. L. Ny and J. Y. Nedelec, *Tetrahedron Lett.*, **25**, 5767 (1984).
- 3) We thank Tosoh Akzo Co. for a gift of a hexane solution of  $\text{Et}_3\text{B}$ .
- 4) Octyl 3,3-dichloroacrylate (**2a**): Bp 78-83 °C (1 Torr, 1 Torr = 133.322 Pa, bath temp); IR (neat) 2954, 2924, 2854, 1735, 1605, 1466, 1297, 1171, 963, 845  $\text{cm}^{-1}$ ;  $^1\text{H}$  NMR ( $\text{CDCl}_3$ )  $\delta$  0.89 (t,  $J$  = 6.5 Hz, 3H), 1.28 (bs, 10H), 1.59-1.73 (m, 2H), 4.16 (t,  $J$  = 6.7 Hz, 2H), 6.38 (s, 1H);  $^{13}\text{C}$  NMR ( $\text{CDCl}_3$ )  $\delta$  14.00, 22.58, 25.83, 28.44, 29.11 (two peaks), 31.71, 65.16, 120.0, 137.3, 162.3. Found: C, 52.35; H, 7.36%. Calcd for  $\text{C}_{11}\text{H}_{18}\text{Cl}_2\text{O}_2$ : C, 52.19; H, 7.17%.
- 5) Selective formation of isopropyl (E)-3-fluoroacrylate from isopropyl 3-chloro-3-fluoropropanoate has been reported. H. Malines and C. Wakselman, *J. Fluorine Chem.*, **25**, 447 (1984).
- 6) Octyl (E)-3-fluoroacrylate (**4c**):  $^1\text{H}$  NMR ( $\text{CDCl}_3$ )  $\delta$  0.89 (t,  $J$  = 4.4 Hz, 3H), 1.15-1.50 (m, 10H), 1.53-1.80 (m, 2H), 4.14 (t,  $J$  = 6.7 Hz, 2H), 5.78 (dd,  $J$  = 11.4, 14.9 Hz, 1H), 7.55 (dd,  $J$  = 11.3, 79.9 Hz, 1H);  $^{13}\text{C}$  NMR ( $\text{CDCl}_3$ )  $\delta$  14.05, 22.61, 25.87, 28.54, 29.16, 31.75, 64.83, 106.8 (d,  $J$  = 14.9 Hz), 162.9 (d,  $J$  = 279.8 Hz), 165.3 (d,  $J$  = 22.9 Hz).
- 7) The reaction of ketene silyl acetals with  $\text{Cl}_4$  or  $\text{CHI}_3$  was not so effective as other polyhalomethanes. For instance, treatment of **1a** with  $\text{Cl}_4$  or  $\text{CHI}_3$  gave  $\text{I}_2\text{C}=\text{CHCOO}-\text{nC}_8\text{H}_{17}$  or (E)- $\text{C}(\text{I})\text{H}=\text{CHCOO}-\text{nC}_8\text{H}_{17}$  in 40% or 37% yield, respectively.

(Received April 30, 1991)